

XRD Selection
Rule Chart
for reflection in
cubic systems

- SC: all allowed
- BCC: h + k + l = even
- FCC: h, k, l all even or all odd ("unmixed")
- Diamond? FCC + basis

(hkl)	$h^2 + k^2 + l^2$	SC	BCC	FCC
100	1	Y	Ν	Ν
110	2	Y	Y	N
111	3	Y	Ν	\overline{Y}
200	4	Y	Y	Y
210	5	Y	Ν	Ν
211	6	Y	Y	Ν
220	8	Y	Y	Y
300	9	Y	Ν	Ν
310	10	Y	Y	Ν
311	11	Y	Ν	Y
222	12	Y	Y	Y
320	13	Y	N	N
321	14	Y	Y	Ν
400	16	Y	Y	Y
Diamo	ond: the rec	l circled	FCC bits	+ (331)

Laue formulation:

The intensity of the scattered electromagnetic wave is superposition of x-rays scattered by the two atoms:

$$\tilde{\vec{E}}(\vec{r},t) = \hat{n}' \tilde{E}_{a} e^{i(\vec{k}'\cdot\vec{r}-\omega t)} + \hat{n}' \tilde{E}_{a} e^{i(\vec{k}'\cdot\vec{r}-\omega t)+i\vec{d}\cdot\Delta\vec{k}}$$

So we have $I_{scatt} \propto \left| e^{i(\vec{k}'\cdot\vec{r}-\omega t)} + e^{i(\vec{k}'\cdot\vec{r}-\omega t)+i\vec{d}\cdot\Delta\vec{k}} \right|^2 = \left| e^{i\vec{k}'\cdot\vec{r}} + e^{i\vec{k}'\cdot\vec{r}} e^{i\vec{d}\cdot\Delta\vec{k}} \right|^2$ $= \left| e^{i\vec{k}\cdot\vec{r}} \left(1 + e^{i\vec{d}\cdot\Delta\vec{k}} \right) \right|^2 = \left| 1 + e^{i\vec{d}\cdot\Delta\vec{k}} \right|^2$

If the second term is -1, then we have completely destructive interference;

if the second term is +1, then we have completely constructive interference

Laue formulation:

In general, if all the scattering are not the same, we write the *Structure Factor* as:

$$S(\vec{d}_j, \Delta \vec{k}) = \sum_{j=0}^{4} f_{aj}(\Delta \vec{k}) e^{i\vec{d}_j \cdot \Delta \vec{k}}$$

where $f_{aj}(\Delta k)$ is the atomic form factor (atomic scattering function) and the sum is over the atoms in the unit cell. Thus, we have

$$I_{scatt} \propto \left| \tilde{\vec{E}'}(\vec{r},t) \right|^2 \propto \left| S(\vec{d}_j, \Delta \vec{k}) \right|$$

If $\Delta \vec{k} = \vec{k}' - \vec{k} = \vec{G}$ then we have constructive interference!

For cubic structures, the $\vec{d}_i = \vec{a}_i$, our lattice vectors, with

$$\vec{G} = m_1 \frac{2\pi}{a} \hat{i} + m_2 \frac{2\pi}{a} \hat{j} + m_3 \frac{2\pi}{a} \hat{k}$$
 $\vec{a}_i \cdot \vec{G} = 2\pi m_i$

